If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-17x+41=0
a = 1; b = -17; c = +41;
Δ = b2-4ac
Δ = -172-4·1·41
Δ = 125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{125}=\sqrt{25*5}=\sqrt{25}*\sqrt{5}=5\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-5\sqrt{5}}{2*1}=\frac{17-5\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+5\sqrt{5}}{2*1}=\frac{17+5\sqrt{5}}{2} $
| 14x+78+9x+33=180 | | 3x-5=2× | | (3x-9)+(7x-13)+(2x+6)=180 | | 9x-10x=-3 | | 5p-3=5p+4-7 | | −3=−0.2k | | √x-8=2 | | -4x-5=10-5x | | 4n-22=86 | | (10x-1)+(2x-11)+(3x-18)=180 | | -1(x+3)+3/4x+5=0 | | 2x-1=5x-x-1 | | 4x^2+23x-36=0 | | -3x-19=26-6x | | 12x+55+4=180 | | f/5-23=-28 | | 14y-6y=-17 | | 6x-26=-2x+22 | | -w+5=-13 | | 4x-55=x+25 | | g/5+19=23 | | 1/10(x+50)=-3x-13+4 | | 2x+8=-1614x | | y/3-9=3 | | 24+.44x=9+1.69x | | (x+7)+(6x+10)+(3x+3)=180 | | (2x+1)/4=(x−3)/7 | | 6x+4x+7x=3(6x-12)-4(x-6) | | 8b+2=80 | | 2x-8=-16-4x | | (m+10)=40 | | 6x-64=53-3x |